▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modular Arithmetic And Exciting Card Tricks!

Judy Li

Maths Soc Presentation

October 1 2024

- 2 Card trick
- 3 The magic (maths) behind the trick

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

New notation

- What do we mean by remainder?
- What does it mean for one number to be divisible by another?

Definition (Congruence)

For a positive integer *n* and integers *a*, *b*, $a \equiv b \pmod{n}$ if *a* and *b* leave the same remainder when divided by *n*.

Examples

Definition (Congruence)

For a positive integer *n* and integers *a*, *b*, $a \equiv b \pmod{n}$ if *a* and *b* leave the same remainder when divided by *n*.

Clocks

Example

$$5 \equiv 2 \pmod{3}$$
$$-1 \equiv 3 \pmod{4}$$
$$100 \equiv 2 \pmod{7}$$
$$100 \equiv 30 \pmod{7}$$
$$100 \equiv -5 \pmod{7}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Laws of Modular Arithmetic

- Addition: if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$.
- Multiplication: if $a \equiv b \pmod{n}$, then $ak \equiv bk \pmod{n}$.
- Exponentiation: if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- 2 stacks of cards: A, 2, 3, 4 and 4, 3, 2, A.
- Shuffle: putting the top card to the bottom of each stack
- I'll give you a magic word: for each letter, you tell me which stack I should shuffle
- After shuffling with all the letters, I'll remove the top card from each stack and shuffle the remaining cards using the word again...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

...abracadabra!

Magic words:

- abracadabra
- mathematics

Definitions

Card trick

The magic (maths) behind the trick \bullet 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Clockwork configurations

Shuffle: going counterclockwise around a clock of 4 cards.

Card trick

The magic (maths) behind the trick 00000

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨーろく⊙

Chinese Remainder Theorem

 Can we always find a (positive) number N such that N ≡ −1 mod m, m − 1,..., 3, 2?

Theorem (Chinese Remainder Theorem: Weaker Version)

. . .

Given two sequences of numbers $A = [a_1, a_2, ..., a_n]$ and $M = [m_1, m_2, ..., m_n]$, where all elements of M are pairwise coprime, there always exists a unique solution for $x \mod L$, where $L = m_1 m_2 \cdots m_n$, such that x satisfies the following:

$$\begin{array}{l} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{array}$$

 $x \equiv a_n \pmod{m_n}$

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem: Stronger Version)

Given two sequences of numbers $A = [a_1, a_2, ..., a_n]$ and $M = [m_1, m_2, ..., m_n]$, let $g = gcd(m_1, ..., m_n)$ and $h = lcm(m_1, ..., m_n)$. If $a_1 \equiv a_2 \equiv ... \equiv a_n \pmod{g}$, then there is a unique solution for $\times \mod h$ such that

$x \equiv a_1$	$(\mod m_1)$
$x \equiv a_2$	$(\mod m_2)$
•••	
$x \equiv a_n$	$(\mod m_n)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Card Trick

- For the card trick, we have $a_1 = a_2 = \cdots = a_n = -1$, so we can always find a magic word regardless of how many cards we use.
- But the words will get pretty long!

Example Problem

Example

Find all integers x such that

$$x \equiv 3 \pmod{4}$$
$$x \equiv 5 \pmod{9}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Card trick

The magic (maths) behind the trick

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you!