[The Theorem](#page-2-0) [Topology to the help](#page-7-0) [Proof of theorem](#page-13-0) [Further links](#page-15-0)
00000 000000 000000 000

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

The Cayley-Hamilton Theorem A Topological Proof

Judy Shuxuan Li

SUMaC Presentation

July 26, 2024

[The Theorem](#page-2-0)

- [Topology to the help](#page-7-0)
- [Proof of theorem](#page-13-0)

[Further links](#page-15-0)

Let $A \in M_n(K)$.

Definition (Characteristic polynomial for a scalar)

The characteristic polynomial of A for $\lambda \in K$, denoted as $p_A(\lambda)$, is given by $p_A(\lambda) = \det(\lambda I_n - A)$.

If we want to calculate $p_A(M)$ for a matrix M, we can't plug M into the above definition.

Definition (Characteristic polynomial for a scalar)

The characteristic polynomial of A for $\lambda \in K$, denoted as $p_A(\lambda)$, is given by $p_A(\lambda) = \det(\lambda I_n - A)$.

Expand det $(\lambda I_n - A)$ and write it as $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$.

KORKAR KERKER EL VOLO

Definition (Characteristic polynomial for a matrix)

 $p_A(M) = M^n + a_{n-1}M^{n-1} + \cdots + a_1M + a_0I_n$

Example

Consider
$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$$
.
\n
$$
p_A(\lambda) = \det(\lambda I_2 - A) = \det \begin{pmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 4 \end{pmatrix} = \lambda^2 - 5\lambda - 2.
$$
\n
$$
p_A(M) = M^2 - 5M - 2I
$$

What if we plug A into its own characteristic polynomial?

Example Consider $A = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$. $p_\mathcal{A}(\lambda)=\det(\lambda I_2-A)=\det\begin{pmatrix} \lambda-1 & -2 \ 3 & 1 \end{pmatrix}$ -3 $\lambda - 4$ $= \lambda^2 - 5\lambda - 2.$ $p_A(A) = A^2 - 5A - 2 = \begin{pmatrix} 7 & 10 \ 15 & 22 \end{pmatrix} - \begin{pmatrix} 5 & 10 \ 15 & 20 \end{pmatrix} - \begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$

KORKAR KERKER SAGA

Theorem (Cayley-Hamilton)

For every $A \in M_n(K)$, $p_A(A) = 0$.

- Linear algebra proofs: (e.g., adjugate matrices proof) computational
- More conceptual proof...as we always want many cool proofs for a cool theorem :D

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Definition (Affine space)

The affine space over K is the set of n-tuples with elements in K. $\mathbb{A}_n = \{ (a_1, a_2, ..., a_n) | a_i \in K \}.$

Definition (Algebraic sets)

The algebraic sets of A_n are of the form $Z(T) = \{ P \in A_n | f(P) = 0 \ \forall f \in T \}$, where $T \subset K[x_1, ..., x_n]$.

Definition (Zariski topology)

We define the Zariski topology on \mathbb{A}_n by taking its closed subsets to be the algebraic sets.

Lemma (1)

All non-empty open subsets of A_n are dense.

Definition (Dense)

$$
A \subseteq X \text{ is dense in } X \text{ if } \overline{A} = X.
$$

Remark

If A intersects every nonempty open subset of X , A must be dense. Otherwise, $U = X \backslash \overline{A} \neq \emptyset$, but as $A \subseteq \overline{A}$, $A \cap U = \emptyset$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

Lemma 1

Proof of Lemma 1.

All open subsets of \mathbb{A}_n are of the form $Z(\mathcal{T})^c$. Take arbitrary nonempty subsets $Z(T_1)^c$, $Z(T_2)^c$. $Z(T_1)^c \cap Z(T_2)^c = (Z(T_1) \cup Z(T_2))^c$. Points in $Z(T_1) \cup Z(T_2)$ are roots of all $f \in T_1$ or roots of all $g \in T_2$, so they are roots of all $fg \in T_1T_2$. $Z(\mathcal{T}_1)^c \cap Z(\mathcal{T}_2)^c = (Z(\mathcal{T}_1 \mathcal{T}_2))^c \neq \emptyset.$ $Z(T_1)^c$ intersects every nonempty open subset of \mathbb{A}_n , so it is dense.

Lemma (2)

Any polynomial map $g : \mathbb{A}_n \to \mathbb{A}_m$ is continuous.

Proof of Lemma 2.

$$
Z(\mathcal{T}) = \{x \in \mathbb{A}_m | f(x) = 0 \,\forall f \in \mathcal{T}\}.
$$

$$
g^{-1}(Z(\mathcal{T})) = \{y \in \mathbb{A}_n | g(y) \in Z(\mathcal{T})\}
$$

$$
= \{y \in \mathbb{A}_n | f(g(y)) = 0 \,\forall f \in \mathcal{T}\},
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

which is an algebraic, and therefore, closed, subset of A_n .

Lemma (3)

For a diagonalisable matrix $M \in M_n(K)$, $p_M(M) = 0$.

Proof of Lemma 3.

 $M = P^{-1}BP$, where B is a diagonal matrix.

$$
p_M(\lambda) = \det(\lambda I - M) = \det(P^{-1}\lambda IP - P^{-1}BP)
$$

=
$$
\det(P^{-1}(\lambda I - B)P) = \det(\lambda I - B) = p_B(\lambda)
$$

イロト イ押 トイヨ トイヨト

 \equiv ΩQ

Let the diagonal entries of B be $\lambda_1, ..., \lambda_n$. They are also the eigenvalues of B. $p_B(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i)$, so

 $p_B(B) = \prod_{i=1}^n (B - \lambda_i I) = 0 = p_M(M).$

Lemma (1)

All non-empty open subsets of A_n are dense.

Lemma (2)

Any polynomial map $g : A_n \to A_m$ is continuous.

Lemma (3)

For a diagonalisable matrix $M \in M_n(K)$, $p_M(M) = 0$.

Let D be the set of diagonalisable matrices in $M_n(K)$. We can think of $M_n(K)$ as \mathbb{A}_{n^2} , so $D \subset \mathbb{A}_{n^2}$.

KORKA BRADE KORA

Proof of Theorem

Proof.

 D^c is the set of matrices with repeated eigenvalues. Their characteristic polynomials have repeated roots, so their discriminant $(\in K[x_1,...,x_{n^2}])$ is zero. I.e., $D^c = \{ M \in M_n(K) | \Delta(p_M) = 0 \}$, which is closed in \mathbb{A}_{n^2} . Hence, D is dense. Define $\phi : \mathbb{A}_{n^2} \to \mathbb{A}_{n^2}$ by $\phi(A) = p_A(A)$. ϕ is continuous and vanishes on the dense subset D, so ϕ vanishes everywhere in \mathbb{A}_{n^2} .

The Zariski dense argument is very powerful!

Example

$$
\det(I - AB) \stackrel{?}{=} \det(I - BA)
$$

Equality clearly holds when A, B are invertible...

- The set of invertible matrices (i.e., matrices with nonzero determinants), is also dense.
- To verify a polynomial identity on $M_n(K)$, it suffices to check the case for the diagonalisable or the invertible matrices, which is much easier!

KORKAR KERKER EL VOLO

- ¹ Hartshorne, R. (2010) Algebraic geometry. New York: Springer.
- ² [https://cykenleung.blogspot.com/2012/12/](https://cykenleung.blogspot.com/2012/12/a-proof-of-cayley-hamilton-theorem.html) [a-proof-of-cayley-hamilton-theorem.html](https://cykenleung.blogspot.com/2012/12/a-proof-of-cayley-hamilton-theorem.html) (An outline of the last proof)

[The Theorem](#page-2-0) [Topology to the help](#page-7-0) [Proof of theorem](#page-13-0) [Further links](#page-15-0)
00000 000000 000000 000 000

K ロ > K 레 > K 코 > K 코 > 『코 → 이익(N)

Thank you!