Topology to the help

Proof of theorem

Further links

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Cayley-Hamilton Theorem A Topological Proof

Judy Shuxuan Li

SUMaC Presentation

July 26, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

1 The Theorem

- 2 Topology to the help
- 3 Proof of theorem
- 4 Further links

The Theorem ●0000	Topology to the help	Proof of theorem	Further links 000
Preliminaries			

Let $A \in M_n(K)$.

Definition (Characteristic polynomial for a scalar)

The characteristic polynomial of A for $\lambda \in K$, denoted as $p_A(\lambda)$, is given by $p_A(\lambda) = \det(\lambda I_n - A)$.

If we want to calculate $p_A(M)$ for a matrix M, we can't plug M into the above definition.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Preliminaries

Definition (Characteristic polynomial for a scalar)

The characteristic polynomial of A for $\lambda \in K$, denoted as $p_A(\lambda)$, is given by $p_A(\lambda) = \det(\lambda I_n - A)$.

Expand det $(\lambda I_n - A)$ and write it as $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$.

Definition (Characteristic polynomial for a matrix)

 $p_A(M) = M^n + a_{n-1}M^{n-1} + \cdots + a_1M + a_0I_n.$

The Theorem 00●00	Topology to the help 000000	Proof of theorem	Further links
To illustrate			

Example

Consider
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
.
 $p_A(\lambda) = \det(\lambda I_2 - A) = \det\begin{pmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 4 \end{pmatrix} = \lambda^2 - 5\lambda - 2.$
 $p_A(M) = M^2 - 5M - 2I$

The Theorem ०००●०	Topology to the help	Proof of theorem	Further links 000
To illustrate			

What if we plug A into its own characteristic polynomial?

Example Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. $p_A(\lambda) = \det(\lambda I_2 - A) = \det\begin{pmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 4 \end{pmatrix} = \lambda^2 - 5\lambda - 2$. $p_A(A) = A^2 - 5A - 2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} - \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

The Theorem	The Theorem 0000●	Topology to the help	Proof of theorem	Further links
	The Theorem			

Theorem (Cayley-Hamilton)

For every $A \in M_n(K)$, $p_A(A) = 0$.

The Theorem	Topology to the help ●00000	Proof of theorem	Further links 000
Conventiona	ul proof		

- Linear algebra proofs: (e.g., adjugate matrices proof) computational
- More conceptual proof...as we always want many cool proofs for a cool theorem :D

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The Theorem	Topology to the help ○●○○○○	Proof of theorem	Further links
The Zariski	Topology		

Definition (Affine space)

The affine space over K is the set of n-tuples with elements in K. $\mathbb{A}_n = \{(a_1, a_2, ..., a_n) | a_i \in K\}.$

Definition (Algebraic sets)

The algebraic sets of \mathbb{A}_n are of the form $Z(T) = \{P \in \mathbb{A}_n | f(P) = 0 \ \forall f \in T\}$, where $T \subseteq K[x_1, ..., x_n]$.

Definition (Zariski topology)

We define the Zariski topology on \mathbb{A}_n by taking its closed subsets to be the algebraic sets.

The Theorem 00000	Topology to the help 00€000	Proof of theorem	Further links
Lemma 1			

Lemma (1)

All non-empty open subsets of \mathbb{A}_n are dense.

Definition (Dense)

$$A \subseteq X$$
 is dense in X if $\overline{A} = X$.

Remark

If A intersects every nonempty open subset of X, A must be dense. Otherwise, $U = X \setminus \overline{A} \neq \emptyset$, but as $A \subseteq \overline{A}, A \cap U = \emptyset$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Lemma 1

Proof of Lemma 1.

All open subsets of \mathbb{A}_n are of the form $Z(T)^c$. Take arbitrary nonempty subsets $Z(T_1)^c, Z(T_2)^c$. $Z(T_1)^c \cap Z(T_2)^c = (Z(T_1) \cup Z(T_2))^c$. Points in $Z(T_1) \cup Z(T_2)$ are roots of all $f \in T_1$ or roots of all $g \in T_2$, so they are roots of all $fg \in T_1T_2$. $Z(T_1)^c \cap Z(T_2)^c = (Z(T_1T_2))^c \neq \emptyset$. $Z(T_1)^c$ intersects every nonempty open subset of \mathbb{A}_n , so it is dense.

The Theorem	Topology to the help 0000●0	Proof of theorem	Further links 000
Lemma 2			

Lemma (2)

Any polynomial map $g : \mathbb{A}_n \to \mathbb{A}_m$ is continuous.

Proof of Lemma 2.

$$Z(T) = \{x \in \mathbb{A}_m | f(x) = 0 \ \forall f \in T\}.$$
$$g^{-1}(Z(T)) = \{y \in \mathbb{A}_n | g(y) \in Z(T)\}$$
$$= \{y \in \mathbb{A}_n | f(g(y)) = 0 \ \forall f \in T\},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

which is an algebraic, and therefore, closed, subset of \mathbb{A}_n .

The Theorem	Topology to the help 00000●	Proof of theorem	Further links
Lemma 3			

Lemma (3)

For a diagonalisable matrix $M \in M_n(K)$, $p_M(M) = 0$.

Proof of Lemma 3.

 $M = P^{-1}BP$, where B is a diagonal matrix.

$$p_M(\lambda) = \det(\lambda I - M) = \det(P^{-1}\lambda IP - P^{-1}BP)$$
$$= \det(P^{-1}(\lambda I - B)P) = \det(\lambda I - B) = p_B(\lambda)$$

э

Let the diagonal entries of *B* be $\lambda_1, ..., \lambda_n$. They are also the eigenvalues of B. $p_B(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i)$ so

$$p_B(B) = \prod_{i=1}^n (B - \lambda_i I) = 0 = p_M(M).$$

The Theorem	Topology to the help	Proof of theorem ●0	Further links
What we've sho	wn so far		

Lemma (1)

All non-empty open subsets of \mathbb{A}_n are dense.

Lemma (2)

Any polynomial map $g : \mathbb{A}_n \to \mathbb{A}_m$ is continuous.

Lemma (3)

For a diagonalisable matrix $M \in M_n(K)$, $p_M(M) = 0$.

Let D be the set of diagonalisable matrices in $M_n(K)$. We can think of $M_n(K)$ as \mathbb{A}_{n^2} , so $D \subset \mathbb{A}_{n^2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Proof of Theorem

Proof.

 D^c is the set of matrices with repeated eigenvalues. Their characteristic polynomials have repeated roots, so their discriminant ($\in K[x_1, ..., x_{n^2}]$) is zero. I.e., $D^c = \{M \in M_n(K) | \Delta(p_M) = 0\}$, which is closed in \mathbb{A}_{n^2} . Hence, D is dense. Define $\phi : \mathbb{A}_{n^2} \to \mathbb{A}_{n^2}$ by $\phi(A) = p_A(A)$. ϕ is continuous and vanishes on the dense subset D, so ϕ vanishes everywhere in \mathbb{A}_{n^2} .

The Theorem	Topology to the help	Proof of theorem	Further links ●00
Further links			

The Zariski dense argument is very powerful!

Example

$$\det(I - AB) \stackrel{?}{=} \det(I - BA)$$

Equality clearly holds when A, B are invertible...

- The set of invertible matrices (i.e., matrices with nonzero determinants), is also dense.
- To verify a polynomial identity on $M_n(K)$, it suffices to check the case for the diagonalisable or the invertible matrices, which is much easier!

The Theorem	Topology to the help 000000	Proof of theorem	Further links ○●○
References			

- Hartshorne, R. (2010) Algebraic geometry. New York: Springer.
- https://cykenleung.blogspot.com/2012/12/ a-proof-of-cayley-hamilton-theorem.html (An outline of the last proof)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

The Theorem

Topology to the help 000000 Proof of theorem

Further links

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you!