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Preliminaries

Let A ∈ Mn(K ).

Definition (Characteristic polynomial for a scalar)

The characteristic polynomial of A for λ ∈ K , denoted as pA(λ), is
given by pA(λ) = det(λIn − A).

If we want to calculate pA(M) for a matrix M, we can’t plug M
into the above definition.
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Preliminaries

Definition (Characteristic polynomial for a scalar)

The characteristic polynomial of A for λ ∈ K , denoted as pA(λ), is
given by pA(λ) = det(λIn − A).

Expand det(λIn−A) and write it as λn+an−1λ
n−1+ · · ·+a1λ+a0.

Definition (Characteristic polynomial for a matrix)

pA(M) = Mn + an−1M
n−1 + · · ·+ a1M + a0In.
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To illustrate...

Example

Consider A =

(
1 2
3 4

)
.

pA(λ) = det(λI2 − A) = det
(
λ− 1 −2
−3 λ− 4

)
= λ2 − 5λ− 2.

pA(M) = M2 − 5M − 2I
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To illustrate...

What if we plug A into its own characteristic polynomial?

Example

Consider A =

(
1 2
3 4

)
.

pA(λ) = det(λI2 − A) = det
(
λ− 1 −2
−3 λ− 4

)
= λ2 − 5λ− 2.

pA(A) = A2−5A−2 =

(
7 10
15 22

)
−
(

5 10
15 20

)
−
(

2 0
0 2

)
=

(
0 0
0 0

)
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The Theorem

Theorem (Cayley-Hamilton)

For every A ∈ Mn(K ), pA(A) = 0.
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Conventional proof

Linear algebra proofs: (e.g., adjugate matrices proof)
computational
More conceptual proof...as we always want many cool proofs
for a cool theorem :D
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The Zariski Topology

Definition (Affine space)

The affine space over K is the set of n-tuples with elements in K .
An = {(a1, a2, ..., an)|ai ∈ K}.

Definition (Algebraic sets)

The algebraic sets of An are of the form
Z (T ) = {P ∈ An|f (P) = 0 ∀f ∈ T}, where T ⊆ K [x1, ..., xn].

Definition (Zariski topology)

We define the Zariski topology on An by taking its closed subsets
to be the algebraic sets.
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Lemma 1

Lemma (1)

All non-empty open subsets of An are dense.

Definition (Dense)

A ⊆ X is dense in X if Ā = X .

Remark
If A intersects every nonempty open subset of X , A must be dense.
Otherwise, U = X\Ā ̸= ∅, but as A ⊆ Ā,A ∩ U = ∅.
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Lemma 1

Proof of Lemma 1.
All open subsets of An are of the form Z (T )c .
Take arbitrary nonempty subsets Z (T1)

c ,Z (T2)
c .

Z (T1)
c ∩ Z (T2)

c = (Z (T1) ∪ Z (T2))
c .

Points in Z (T1) ∪ Z (T2) are roots of all f ∈ T1 or roots of all
g ∈ T2, so they are roots of all fg ∈ T1T2.
Z (T1)

c ∩ Z (T2)
c = (Z (T1T2))

c ̸= ∅.
Z (T1)

c intersects every nonempty open subset of An, so it is
dense.
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Lemma 2

Lemma (2)

Any polynomial map g : An → Am is continuous.

Proof of Lemma 2.

Z (T ) = {x ∈ Am|f (x) = 0 ∀f ∈ T}.
g−1(Z (T )) = {y ∈ An|g(y) ∈ Z (T )}

= {y ∈ An|f (g(y)) = 0 ∀f ∈ T},

which is an algebraic, and therefore, closed, subset of An.
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Lemma 3

Lemma (3)

For a diagonalisable matrix M ∈ Mn(K ), pM(M) = 0.

Proof of Lemma 3.

M = P−1BP , where B is a diagonal matrix.

pM(λ) = det(λI −M) = det(P−1λIP − P−1BP)

= det(P−1(λI − B)P) = det(λI − B) = pB(λ)

Let the diagonal entries of B be λ1, ..., λn. They are also the
eigenvalues of B.
pB(λ) =

∏n
i=1(λ− λi ), so

pB(B) =
∏n

i=1(B − λi I ) = 0 = pM(M).
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What we’ve shown so far

Lemma (1)

All non-empty open subsets of An are dense.

Lemma (2)

Any polynomial map g : An → Am is continuous.

Lemma (3)

For a diagonalisable matrix M ∈ Mn(K ), pM(M) = 0.

Let D be the set of diagonalisable matrices in Mn(K ).
We can think of Mn(K ) as An2 , so D ⊂ An2 .
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Proof of Theorem

Proof.
Dc is the set of matrices with repeated eigenvalues.
Their characteristic polynomials have repeated roots, so their
discriminant (∈ K [x1, ..., xn2 ]) is zero. I.e.,
Dc = {M ∈ Mn(K )|∆(pM) = 0}, which is closed in An2 .
Hence, D is dense.
Define ϕ : An2 → An2 by ϕ(A) = pA(A).
ϕ is continuous and vanishes on the dense subset D, so ϕ vanishes
everywhere in An2 .
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Further links

The Zariski dense argument is very powerful!

Example

det(I − AB)
?
= det(I − BA)

Equality clearly holds when A,B are invertible...

The set of invertible matrices (i.e., matrices with nonzero
determinants), is also dense.
To verify a polynomial identity on Mn(K ), it suffices to check
the case for the diagonalisable or the invertible matrices, which
is much easier!
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Thank you!
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